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Abstract

The modeling of forced convection heat transfer for carbon dioxide flowing inside a heated tube at supercritical

conditions was studied. The conventional models in the literature tend to modify a constant property correlation by

including thermodynamic property terms that follow the heat flux trends. An innovative heuristic method is assumed

here for the first time to draw the case-specific heat transfer coefficient correlation from the experimental data on said

quantity alone.

Neural networks were used since they constitute a general, powerful function-approximator tool proving able to

represent a conventional heat transfer surface precisely in the present case. Four different correlation architectures were

considered for the neural network function, alternatively based on dimensionless groups and on directly accessible

physical quantities as independent variables. In all these architectures, the optimal functional form of the correlation

was obtained using a completely heuristic procedure based exclusively on experimental data, reaching an accuracy

comparable with the experimental uncertainties declared.

An improved performance of the present model was found with respect to conventional correlations. On all the data

sets, the third architecture reaches an AAD of 3.98% against 4.09% for the conventional equation and the fourth ar-

chitecture an AAD of 2.67% against 4.30% for the conventional equation. Besides both these NN architectures present

Bias values very close to 0, whereas the conventional equation has a Bias considerably greater.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The rates of heat transfer to fluids can reach signifi-

cantly higher values in their near-critical region than

further away from said region. Possible applications

range from supercritical heat exchangers in power sta-

tions to supercritical fluid extraction processes and to

carbon dioxide vapor compression cycles, in which heat

rejection is performed at supercritical conditions. The

fluids studied are mainly carbon dioxide and water and,

between the two, carbon dioxide has been the more ex-

tensively investigated, particularly under heating condi-

tions [1–7].

The focus for these studies was mainly the develop-

ment of nuclear power station cooling circuits under

severe temperature conditions [2,3]. A recent, particu-

larly interesting work on heat transfer for carbon dioxide

heating [8] extensively reports the results of a systematic

experimental campaign, where the working variables,

such as mass flow rate, heat flux, temperature and pres-

sure, were varied very regularly, so as to cover the

working ranges homogeneously. This condition is fun-

damental to the application of a totally heuristic method,

as shown later on. The data sets available in the lit-

erature span a wide range of working conditions, though

they are not regularly and homogeneously distributed

in the data region. A variety of correlations has been

proposed in the literature to predict the coefficients for
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heat transfer to fluids in the near-critical region, but

discrepancies are reported also because the thermophys-

ical properties such as density, heat capacities, enthalpy,

viscosity, thermal conductivity, etc., in said region pre-

sent abrupt variations with limited changes in tempera-

ture or pressure. Also, these variations induce major

changes in the convective heat transfer, as shown exper-

imentally, for instance, by Yamagata et al. [9] in the

forced convection heating of supercritical water inside

tubes. As usual, the correlations were developed assum-

ing an initial tentative model, which undergoes succes-

sive modifications to correct discrepancies using a ‘‘trial

and error’’ type of approach. The present work, on the

other hand, is heuristic and aims to draw analytical for-

mulations directly from experimental data, providing

they are presented in an organized form.

Neural networks were used here because they are a

very versatile and powerful function-approximator tool.

Having proved their ability to represent a conventional

heat transfer surface for the present case, a neural net-

work was trained on a limited amount of data homo-

geneously covering the working conditions range. Once

the network has been trained successfully, it is capable

of representing the behavior of the whole data set.

Moreover, extrapolation to further data sets also proves

to be satisfactory.

2. Conventional heat transfer equation

Thermophysical properties reveal very strong gradi-

ents in the near-critical zone. To represent these varia-

tions adequately, very accurate models are required for

the thermophysical properties. In the present work, the

Span and Wagner [10] thermodynamic properties for-

mulation for carbon dioxide and the Vesovic and co-

workers [11,12] transport properties formulation were

adopted.

As an example of the great variation in thermody-

namic properties in the near-critical zone, Fig. 1 shows

the density, isobaric heat capacity, thermal conductivity,

viscosity and Prandtl number of carbon dioxide along

supercritical isobars from 8 to 9.5 MPa, considering that

Pc ¼ 7:3773 MPa. From Fig. 1, it clearly emerges that,

depending on the ðT ; PÞ conditions, the fluid changes
greatly in density within a very narrow temperature

range. Moreover, at each pressure there is a tempera-

ture, defined as the �pseudo-critical� temperature and
indicated by Tm [2], at which the isobaric heat capacity
reaches a maximum. At each pressure, the fluid is in a

liquid-like state at T < Tm and in a gas-like state at

T > Tm. There is thus a pseudo-critical line that can be

considered as the continuation of the saturation line. In

the near-critical region, the plots for viscosity and

thermal conductivity present peaks due to long-range

fluctuations [13]. This phenomenon, which calls for a

local, specialized modification of the thermophysical

property modeling, called �critical enhancement�, is very
strong for thermal conductivity even quite far from the

critical point, whereas for viscosity it is far less impor-

tant and confined to a narrow range, often becoming

negligible. Fig. 1 shows that, at near-critical isobars, the

thermal conductivity reaches a maximum, though less

pronounced than for the isobaric heat capacity in similar

Nomenclature

cP isobaric heat capacity (kJ/kgK)

�ccP averaged isobaric heat capacity (kJ/kgK)

D diameter (m)

Ec Eckert number

f friction factor

fob objective function

f ðxÞ transfer function

h fluid enthalpy (kJ/kg)

I number of neurons in input layer

J number of neurons in hidden layer

K number of neurons in output layer

L length (m)

_mm mass flow rate (kg/m2 s)

NPT number of points

Nu Nusselt number

P pressure (MPa)

Pr Prandtl number

_qq heat flux (kW/m2)

Re Reynolds number

Si output layer value

T temperature (K)

u fluid velocity (m/s)

Ui input layer value

Vi physical input

Wk physical output

Greek symbols

a heat transfer coefficient (kW/m2 K)

q density (kg/m3)

Subscripts

CP constant properties

b at bulk

c critical

m pseudo-critical

r reduced

SC supercritical

w at wall
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conditions. On the other hand, no maximum is noticed

for viscosity along the same isobars. All these phenom-

ena result in a behavior of the Prandtl number as plotted

in Fig. 1, which shows a maximum mainly due to the

peak in the isobaric heat capacity. Such strong varia-

tions in thermophysical properties result in both an en-

hancement and a deterioration of the heat transfer

coefficient [9]. In order to apply the conventional, con-

stant-properties approach to this problem successfully,

attempts have been made to introduce terms in the

equation that take into account the property variation of

the fluid along the radial co-ordinate [2,4]. These terms,

which are needed to correct the discrepancies, are sub-

stantially empirical, and were developed over the years

by ‘‘trial-and-error’’, resulting in a long series of suc-

cessive modifications. As a result, review papers on this

subject [14,15] report at least five different versions of the

conventional empirical correlation, generally based on

the Dittus-Boelter or Gnielinski formulations for forced

convection inside tubes, which differ slightly from one

Fig. 1. Density, isobaric heat capacity, thermal conductivity, viscosity, and Prandtl number of carbon dioxide at pressures from 8 to

9.5 MPa, as function of temperature.
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another, posing the question as to which is the best of

the published correlations. Ashfin and Asadollah [14]

and Olson and Allen [8] recommend the Krasnoshche-

kov and Protopopov [2] formulation, where––as pre-

sented by Olson and Allen [8]––the constant property

term (CP) is represented by the Gnielinski [16] correla-

tion

NuCP ¼
f
2
ðRe� 1000ÞPr

1þ 12:7 f
2

� �ð1=2ÞðPrð2=3Þ � 1Þ 1

"
þ D

L

� �ð2=3Þ
#

ð1Þ

in which all the properties are evaluated at the bulk

temperature, and the friction factor f is given by the
Karman–Nikuradse implicit correlation:

1ffiffiffi
f

p ¼ 4:0 log10ðRe
ffiffiffi
f

p
Þ � 0:4 ð2Þ

which is valid in the range 2300 < Re < 5� 106 and
0:5 < Pr < 2000. The supercritical (SC) correction,

proposed by Krasnoshchekov and Protopopov [2], ac-

counts for property gradients in the radial direction

between wall and core fluid through density and heat

capacity ratios. The SC correlation is then obtained

from Eq. (1):

NuSC ¼ NuCP
qw
qb

� �0:3 �ccP
cP;b

 !n
ð3Þ

where �ccP represents an averaged heat capacity of the
fluid between the bulk and the wall temperatures cal-

culated as:

�ccP ¼
hw � hb
Tw � Tb

ð4Þ

with hw;b as the fluid enthalpy at wall (w) and bulk (b)
conditions, respectively. The exponent n in Eq. (3) is a
function of the wall temperature Tw, bulk temperature
Tb and pseudo-critical temperature Tm, which in turn
depends on the pressure. It is calculated as follows:

if Tw=Tm < 1:0 or if Tb=Tm P 1:2; n ¼ 0:4 ð5Þ

if Tb=Tm < 1:06 Tw=Tm; n ¼ 0:4þ 0:18 Tw
Tm

�
� 1
�

ð6Þ

if Tw=Tm P 1:0 and 1:0 < Tb=Tm < 1:2

n ¼ 0:4þ 0:18 Tw
Tm

�
� 1
�
1

�
� 5 Tb

Tm

� ��
ð7Þ

This correlation will be indicated from here on as

the Krasnoshchekov, Protopopov, Pethukov, Gnielinski

(KPPG) conventional correlation.

3. Neural networks in terms of dimensionless numbers

A new correlation technique is proposed here, based

on neural networks. Neural networks (NN) have already

been applied to heat transfer problems [17,18], but not

yet to the direct correlation of experimental data on the

heat transfer coefficient as a function of the working

conditions. Among the different neural network archi-

tectures, the multilayer feedforward neural network

(MLFN) with only one hidden layer seems to be the

most effective as a universal approximator of continuous

functions in a compact domain [19,20]. An MLFN

contains several neuron layers (multilayer) and the in-

formation goes in only one direction, from input to

output (feedforward).

Four architectures were applied to the regression of

heat transfer coefficients as functions of working con-

ditions. The first employs the traditional dimensionless

numbers, i.e., it expresses Nu as a function of Re, Pr, and
Ec, and it is represented in Fig. 2. The three values of the
input layer, U1, U2 and U3, represent the scaled inde-
pendent variables, related, respectively, to the Reynolds

number Re, Prandtl number Pr, and Eckert number Ec,
which is defined as:

Ec ¼ u2

cPðTw � TbÞ
ð8Þ

where u is the fluid velocity. This number was chosen
because it includes the temperature difference ðTw � TbÞ,
which directly controls the thermophysical property

variation between wall and bulk.

The value of the output layer S1 represents the scaled
Nusselt number, Nu. As in current practice with MLFN,
the input layer values U1, U2 and U3 and the output layer

Input layer Hidden layer Output layer

I=3 J+1 K=1

U1

U2

U3

S1

(wij)

(wjk)

Bias1

Bias2

Hj

Fig. 2. Schematic representation of the MLFN for the first

architecture.
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value S1 are compressed here within the same range
0.05–0.95. This means that U1, U2 and U3 do not coin-
cide with the �true� independent variables ðRe; Pr;EcÞ,
they represent a linear transformation of them. Corre-

spondingly, S1 is the linear transformation of the actual
output Nu. Moreover, a logarithmic filter is applied to
the independent variable Ec because of its wide range of
variation.

Each neuron in a layer makes the weighted summa-

tion of all the neurons in the previous layer, then passes

this summation through a transfer function. The trans-

fer function used here is a sigmoid function of the form:

f ðxÞ ¼ b
1

1þ e�2cx ð9Þ

Two positive parameters are applied in Eq. (9) to make

the function�s behavior more flexible: b changes the acti-
vation span and c determines the steepness of the sigmoid
function.

The MLFN topology is determined once the number

of neurons in the three layers has been set: I represents
the number of neurons in the input layer (including the

bias term), K the number of neurons in the output layer.
In our case, there are three real inputs and one real

output, so it is I ¼ 4, K ¼ 1.
The number of neurons in the hidden layer J (with-

out the bias) has to be found by trial and error. In the

present cases, the optimal value of J , as an ideal com-
promise between computational speed and accuracy of

the resulting function, was found to be 7. In our case, the

actual inputs V1, V2, V3, represent the independent vari-
ables of the system:

V1 ¼ Nu V2 ¼ Pr V3 ¼ Ec

and, similarly, the actual output W1 represents the de-
pendent variable:

W1 ¼ Nu

Using Vi as the physical input in terms of dimensionless
numbers ðRe; Pr;EcÞ and Wk as the physical output (Nu),
the analytical form of the present MLFN is:

f ðxÞ ¼ b
1

1þ e�2cx ð9Þ

sk ¼
Amax � Amin
Wmax;k � Wmin;k

ð10Þ

Wk ¼
Sk � Amin

sk
þ Wmin;k ð11Þ

Sk ¼ f
XJþ1
j¼1
wjkHj

 !
ð12Þ

Hj ¼ f
XI
i¼1
wijUi

 !
ð13Þ

ui ¼
Amax � Amin
Vmax;i � Vmin;i

i ¼ 1; 2 ð14Þ

Ui ¼ uiðVi � Vmin;iÞ þ Amin i ¼ 1; 2 ð15Þ

ui ¼
Amax � Amin

lnðVmax;iÞ � lnðVmin;iÞ
i ¼ 3 ð16Þ

Ui ¼ ui½lnðViÞ � lnðVmin;iÞ	 þ Amin i ¼ 3 ð17Þ

HJþ1 ¼ Bias 2 UI ¼ Bias 1

with 16 i6 I � 1, 16 j6 J and 16 k6K, where J is the
number of neurons in the hidden layer, Amin and Amax
are the allowable range limits of the compressed input

variables, Vmin;i and Vmax;i are the pre-defined limits of the
independent input variables, and Wmin;k and Wmax;k are
the pre-defined limits of the dependent output variable.

The quantity Vi is the generic independent variable, and
Wk is the generic dependent variable. The transfer
function defined in Eq. (9) is recalled in Eqs. (12) and

(13). In Eq. (12) the summation is over the J þ 1 nodes
of the hidden layer, in Eq. (13) it is over the I nodes of
the input layer.

Due to the characteristics of the present problem, the

MLFN parameters are set here to the values shown in

the lower part of Table 6 in Appendix A. The input

variables and the output function have thus both been

compressed within the range 0.05–0.95. Given an ex-

perimental data set of output Nui, in the independent
variables ðRe; Pr;EcÞi, the weighting factors are found by
minimizing the following objective function by means of

an optimization procedure

fob ¼
1

NPT

XNPT
i¼1

Nucalci � Nuexpi
Nuexpi

� �2
ð18Þ

where NPT stands for the number of experimental

points on which the NN is trained.

After the training, the Nu equation is obtained as a
continuous function of ðRe; Pr;EcÞ. Two training sets
were selected, obtaining two sets of weighting factors,

Table 6, then originating two versions of the first NN

architecture. The first version was trained on only one

subset of the Olson and Allen data [8], which was ran-

domly extracted for about 250 points on a total of 1114.

The validity range of the NN model obtained is the

same as for the reference data [8] on which the NN was

trained. Those data quite homogeneously cover the fol-

lowing ranges: 30000 < Re < 160000; 2 < Pr < 5; 10�7 <
Ec < 10�4. Since the method is totally heuristic, it is
essential to have evenly distributed experimental data

available; for the time being, the data from the present

source [8] are the only ones that fulfill this requirement.

It was decided not to train the NN on all available data

irrespective of their spatial consistency with respect to

the independent variables. In fact, the primitive data

base can be seen as a sparse set of points, whereas the

G. Scalabrin, L. Piazza / International Journal of Heat and Mass Transfer 46 (2003) 1139–1154 1143



MLFN, as a universal function approximator, needs to

be applied to a compact data domain according to the

Kolmogorov theorem [21]. The validity ranges men-

tioned were based on this criterion. The above require-

ment was confirmed by the fact that it proved impossible

to reach a convergence of the model on the primitive

data base. The second version of the first architecture

was trained on an enlarged data set, including the subset

of the source [8], plus the previously mentioned points

from the other sources concerning the heating of carbon

dioxide [1–7] that fall within the same range of dimen-

sionless numbers ðRe; Pr;EcÞ as the Olson and Allen
data [8]. The same weight was attributed to all the data

points in the regression. The weighting factors and all

the parameters needed to implement the NN are given

in Table 6 for both the first and the second versions of

the first NN architecture.

4. Neural networks in terms of physical variables

The second architecture directly represents the heat

transfer coefficient a as a function of the controlling
physical quantities as independent variables, which are

the reduced pressure Pr, reduced temperature Tr, mass
flow rate _mm, and heat flux _qq. Due to the modular

structure of NNs, the same mathematical formalism

described earlier for the first architecture, Eqs. (9)–(17)

holds––though this architecture presents a different

number of neurons in the input and hidden layers. The

present architecture is similar to the one shown in Fig. 2:

the four values of the input layer U1, U2, U3 and U4,
represent the scaled independent variables, related, re-

spectively, to each of the physical quantities cited. No

logarithmic filter is applied to the input variables. The

input layer has five neurons in all (I ¼ 5), i.e., four input
variables plus the first bias. For the hidden layer, the

ideal number proved to be six neurons, plus the second

bias (J ¼ 6). In the output layer there is one neuron,
representing the scaled heat transfer coefficient a. Hence

V1 ¼ Pr V2 ¼ Tr V3 ¼ _mm V4 ¼ _qq and W1 ¼ a

Given an experimental data set of output ai, in the in-
dependent variables ðPr; Tr; _mm; _qqÞi, the weighting factors
are found by minimizing the following objective func-

tion.

fob ¼
1

NPT

XNPT
i¼1

acalci � aexpi
aexpi

� �2
ð19Þ

After training, the heat transfer coefficient a can be ex-
pressed as a continuous function of ðPr; Tr; _mm; _qqÞ. Two
training sets were selected and two sets of weighting

factors were obtained, giving rise to two versions of this

second NN architecture. The first version was trained

only on a subset of the data from [8]. The subset was

randomly extracted and was composed of about 250

points on a total of 1114. The validity range of this NN

model is the same as for the data [8] on which the NN

was trained. The data quite homogeneously cover the

following ranges of the physical quantities ðPr; Tr; _mm; _qqÞ

1:04 < Pr < 1:80; 0:94 < Tr < 1:03; 170 kg=m2s < _mm

< 910 kg=m2 s; 12 kW=m2 < _qq < 66 kW=m2:

The second version of the second architecture was

trained on an enlarged data set, including the subset [8],

plus the points from the other sources that fall within the

same range of physical quantities ðPr; Tr; _mm; _qqÞ as the data
set [8]. All the data points were assumed to have the

same statistical weights for the regression. In Table 7 in

Appendix A, the weighting factors and the necessary

NN parameters are given for both the first and the

second versions of this architecture.

5. Neural networks accounting for property variation

A third NN architecture was studied, that was similar

to the first, but with slightly different inputs. From a

functional point of view, this architecture strictly par-

allels the input/output variables of the KPPG conven-

tional correlation. In the present case, the following four

independent variables were assumed

V1 ¼ Re V2 ¼ Pr V3 ¼
qw
qb

� �
V4 ¼

�ccP
cP;b

 !

whereas the dependent variable was still

W1 ¼ Nu

As a consequence, in this architecture it is I ¼ 5, and
K ¼ 1. For the hidden layer, a number of six neurons,
plus the second bias, was found to be optimal (J ¼ 6).
No logarithmic filter was applied to the input variables.

For the mathematical formalism, reference is made, here

again, to Eqs. (9)–(17), whereas the schematic represen-

tation is much the same as in Fig. 2.

In the context of the present architecture, the

MLFN�s capability as a general function approximator
of a conventional heat transfer surface for the present

problem was studied. From the KPPG correlation,

about 8000 values of

Nu ¼ Nu Re; Pr;
qw
qb

� �
;

�ccP
cP;b

 !" #

were generated over a regular grid of the independent

variables. The NN was trained on a subset of these

values, regularly extracted from the whole base of val-

ues, and was then validated over the whole set of the

8000 values generated. With a training set composed of
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only a fifth of all the values, the MLFN with six neurons

in the hidden layer represents the conventional heat

transfer surface with an AAD of about 1.5%. Reducing

the number of values in the training set causes a corre-

sponding reduction in MLFN approximation accuracy,

as illustrated in Fig. 3, which also shows that about 700

values regularly extracted for the training set suffice to

ensure an accurate reproduction of the heat transfer

surface. This means that a limited experimental effort is

needed to develop a specific heat transfer surface, pro-

viding that evenly distributed data are available in the

range of variables of interest.

Two versions of this NN architecture were devel-

oped. One was trained only on a subset randomly ex-

tracted from the data [8], and was composed of about

250 points from a total of 1114. The range of validity of

the NN model obtained is the same as for the data [8] on

which the NN was trained. These data are distributed

quite regularly over the ranges of the physical quantities

ðRe; Pr; ðqw=qbÞ; ð�ccP=cP;bÞÞ: 30000 < Re < 160000; 2 <
Pr < 5; 0:2 < ðqw=qbÞ < 1:0; 0:3 < ð�ccP=cP;bÞ < 3:15. The
second version of the architecture was trained on an

enlarged data set, including the subset of data [8] and the

points from the other sources that fell within the same

range of dimensionless numbers ðRe; Pr; ðqw=qbÞ; ð�ccP=
cP;bÞÞ as the data [8]. The weighting factors and all the
parameters needed to implement the NN are given in

Table 8 in Appendix A for both the first and the second

versions of this NN architecture.

In the context of the radial variation in the thermo-

physical properties, another architecture can be set up,

in much the same way as the second architecture was

developed from the first. The independent variables of

the last architecture are actually dependent functions of

some physical controlling variables. The present general

aim is the development of a new relation, similar in the

structure to the third architecture, but in which only the

physical independent variables have to be considered. In

the evolution from the first to the second case it was

demonstrated that the controlling variables of Re and Pr
are ðPr; Tr; _mmÞ. Considering the second architecture the
heat flux _qq was also included as a variable. The radial
variation of the thermophysical properties has to be

furthermore included. For this purpose it can be dem-

onstrated that the two property ratios ðqw=qbÞ, ð�ccP=cP;bÞ
are dependent functions of the variables Tw=Tb, Tr and
Pr. In Fig. 4, these two functions are plotted, as an ex-
ample, against Tw=Tb at P ¼ 8 MPa and Tb ¼ 297:69 K,
assuming the carbon dioxide dedicated EoS [10], and the

said dependence is clearly shown. The general heat

transfer relation is moreover valid

a ¼ _qq

Tb Tw
Tb
� 1

� � ð20Þ

with Tb ¼ Tr 
 Tc, from which it becomes evident that the
four quantities a, _qq, Tb and Tw are not independent of
each other, but _qq is related to a through a function of the
variables Tw=Tb and Tr, Eq. (20). The quantity _qq in the
present context is then a dependent function of Tw=Tb
and Tr and it can be consequently replaced by such
variables in the functional form of a.
Consequently, a fourth architecture can be consid-

ered in which the independent variables are the reduced

pressure Pr, reduced temperature Tr, mass flow rate _mm,
and wall-to-bulk temperature ratio

V1 ¼ Pr V2 ¼ Tr V3 ¼ _mm V4 ¼
Tw
Tb

� �

while the dependent variable is still

W1 ¼ a

Two training sets were selected and two versions of

the fourth architecture were obtained as usual. The first

0 400 800 1200 1600 2000

1.2

2.4

2.8

training
validation

1.6

2.0

A
A

D
(%

)

NPT training set

Fig. 3. Validation test of the MLFN as function approximator

of the conventional KPPG heat transfer surface with decreasing

number of the training set points.

Fig. 4. Plot of the two properties groups ðqw=qbÞ and ð�ccP=cP;bÞ
as functions of the temperature ratio ðTw=TbÞ at the pressure of
8 MPa.
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version was trained only on a subset of Olson and Allen

data [8]. For the hidden layer a number of six neurons,

plus the second bias, was found to be optimal (J ¼ 6).
The range of validity of this NN correlation is the same

as for the reference [8] used for the NN training. The

data regularly cover the ranges of physical quantities

ðPr; Tr; _mm; ðTw=TbÞÞ: 1:04 < Pr < 1:80; 0:94 < Tr < 1:03;
170 kg=m2 s < _mm < 910 kg=m2 s; 1:0 < ðTw=TbÞ < 1:23.
The second version of the fourth architecture was

trained on an enlarged data set, including the subset of

Olson and Allen data [8], plus the points from the other

sources that fell within the same range of physical

quantities ðPr; Tr; _mm; ðTw=TbÞÞ as the reference data [8].
The weighting factors, together with the NN parame-

ters, are given in Table 9 of Appendix A for both the

first and the second versions of the present architecture.

6. Validation results

All four NN models described in the previous sec-

tions were tested. First of all, the data sources were

validated against the conventional equation in order to

check their consistency. The validation results of the

KPPG conventional equation, Eqs. (1)–(7), with respect

to the literature sources considered [1–8], are given in

Table 1. In the present work, the error deviation (D%),
average absolute deviation (AAD%) and bias (Bias%)

are evaluated as

ðD%Þi ¼
xexpi � xcalci

xcalci

� 100

AAD% ¼ 1

NPT

XNPT
i¼1

jD%ji

Bias% ¼ 1

NPT

XNPT
i¼1

ðD%Þi ð21Þ

where x is intended as a dependent variable, such as Nu
or a, and exp and calc stand for experimental and cal-
culated values, respectively.

The deviations lie around the zero line, but are quite

large. This formulation was originally developed on data

sets regarding the heating of carbon dioxide and it re-

produces this kind of data with an AAD generally less

than 10%. The Olson and Allen data sets [8] are the most

recent measurements for carbon dioxide heating and

they show only minimal deviations from the KPPG

conventional equation, by comparison with other data

sources, Table 1.

Validation of the NN model in terms of dimension-

less numbers (the first architecture) has been conducted

only on the data points falling within the validity range

of the model. For those points, a parallel validation was

conducted against the conventional equation for com-

parison and the results are given in Table 2 for the first

and the second versions. The first version very ade-

quately represents the data source [8], on a subset of

which it was trained, with an AAD of 1.55%, which can

be compared with the AAD of 3.50% of the conven-

tional equation. Unfortunately, the first version is gen-

erally worse than the conventional equation in the

representation of sources [1–7] not included in the

training set. In the second version of the first NN ar-

chitecture, some points from other sources were in-

troduced in the regression, with positive and negative

consequences: the sources [1–7] are reproduced much

better than in the first version, but the representation of

the source [8] is worse. The AAD of the second version

for this latter source is 9.26%, compared to 1.55% of the

first version. Looking at the deviations of all the sources

[1–8] from the second version of the first NN architec-

ture, some points from reference [8] present an extremely

high deviation, greater than 100%, whereas the same

points were well represented in the first version. Adding

the data coming from other sources [1–7] in the regres-

sion also presents a drawback. This certainly indicates a

discrepancy between the data coming from different

sources, at least in terms of the dimensionless numbers

form Nu ¼ NuðRe; Pr;EcÞ. From the present study, it is

impossible to infer the origin of any such discrepancy, so

it would be best not to split the data into primary and

secondary on the base of their claimed accuracy. On the

other hand, the positive consequence of introducing

other sources in the regression is that many sources

show a smaller AAD, for the second version, than the

conventional equation. This might also be explained by

an excessive scatter of the data base adopted, notwith-

standing the limitations imposed on the range of the

independent variables.

A similar validation was done for the NN model in

terms of physical quantities (second architecture). The

results are shown in Table 3 for the first and the sec-

ond versions. Here again, this first version represents the

Table 1

Validation of the conventional KPPG equationa

Flow direction NPT AAD

(%)

Bias

(%)

Max

(%)

Ref.

H 1114 3.50 3.03 15.86 8

H 63 11.31 )8.73 )31.05 2

H 35 15.27 )15.27 )22.60 3

H 69 23.23 )16.89 )68.45 1

H 36 10.94 7.57 29.58 4

H 27 32.19 )32.19 )71.66 5

H 90 24.47 12.08 75.95 6

U 28 17.34 )16.86 )41.47 7

Overall 1462 7.32 0.79 75.95

aH, horizontal, U, upwards, NPT, number of points,

AAD ¼ average absolute deviation,
Max ¼ maximum deviation.
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data source [8] quite well, with an AAD of 1.72%

compared with the 3.50% AAD of the KPPG conven-

tional equation. Unluckily, the performance of the first

version in representing the external sources [1–7] is al-

ways worse than that of the conventional equation.

For the second version, the same can be said as for

the first NN architecture in terms of dimensionless

numbers. The AAD for the source [8] reaches 6.59%, but

the external sources in this case are better represented

than by the conventional equation. Some points from

the source [8] show an extremely high deviation for the

second version, while they are well represented by the

first. This is exactly what happened in the first NN ar-

chitecture. It can thus be concluded that the data sources

are not consistent with each other in terms of physical

quantities either a ¼ aðPr; Tr; _mm; _qqÞ.

The data sources are consistent when compared with

the conventional equation, however, Table 1. In fact, the

conventional equation was able to offer a very good

representation of the source [8] as well as a fair repre-

sentation of all the external sources. On the other hand,

NNs offer an extremely versatile representation tool in

this case. The partial failure of the NN, both in the first

and in the second architecture, suggests that any heu-

ristic model in the form of Nu ¼ NuðRe; Pr;EcÞ or
a ¼ aðPr; Tr; _mm; _qqÞ is very likely to fail. The success of the
conventional, semi-empirical equation is due, in our

opinion, to the introduction of the Krasnoshchekov and

Protopopov terms in the analytical form, Eqs. (3)–(7),

which take into account the property variation of the

fluid along the radial co-ordinate. This cannot be done

properly by the two NN architectures proposed, even

Table 2

First architecture MLFN model validationa ;b

NPT NPT1 Conventional KPPG equation MLFN 1st arch., 1st vers. MLFN 1st arch., 2nd vers. Ref.

AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%)

1114 1114 3.50 3.04 15.86 1.55 0.08 )12.07 9.26 6.91 120 8

63 20 9.57 )6.24 )23.05 47.43 )47.43 )61 23.92 �14.38 59.12 2

35 0 – – – – – – – – – 3

69 37 25.13 )15.83 )46.05 49.98 )49.35 )64 6.05 )1.90 )21.80 1

36 18 13.13 7.25 29.57 9.66 9.14 22.3 8.95 4.44 24.75 4

27 5 26.44 )26.44 )33.47 54.41 )54.41 )68.82 19.1 �5.82 33.2 5

90 7 5.36 3.66 11.83 15.96 )15.96 )24.42 14.57 13.32 31.95 6

28 0 – – – – – – – – – 7

1462 1201 4.52 2.25 )46.05 4.23 )2.41 )68.82 9.48 6.23 120

a See footnote at Table 1.
bNPT1, the number of points within the range of validity of the first architecture NN model;

NPT2, the number of points within the range of validity of the second architecture NN model;

NPT3, the number of points within the range of validity of the third architecture NN model;

NPT4, the number of points within the range of validity of the fourth architecture NN model.

Table 3

Second architecture MLFN model validationa;b

NPT NPT2 Conventional KPPG equation MLFN 2nd arch., 1st vers. MLFN 2nd arch., 2nd vers. Ref.

AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%)

1114 1114 3.50 3.04 15.86 1.72 0.61 13.01 6.59 4.55 113 8

63 0 – – – – – – – – – 2

35 0 – – – – – – – – – 3

69 0 – – – – – – – – 1

36 9 7.88 3.41 )13.99 16.16 16.16 20.30 3.85 2.76 9.30 4

27 0 – – – – – – – – – 5

90 41 22.36 5.70 75.95 27.50 )16.06 )75.01 10.20 2.05 41.65 6

28 0 – – – – – – – – 7

1462 1164 4.20 3.13 75.95 2.74 0.15 )75.01 6.70 4.45 113

a See footnote at Table 1.
b See footnote at Table 2.
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though a low Ec number in the first architecture, or a
high heat flux in the second, is certainly related to a high

radial temperature gradient, i.e., to a pronounced tem-

perature profile along the radial co-ordinate, and thus to

large thermophysical property variations for the fluid.

But neither the first architecture nor the second incor-

porate information on the thermophysical property

variations in the radial direction, which have to be

supplied by a highly accurate thermodynamic equation

of state for the fluid, as in the KPPG conventional

equation. For this particular heat transfer problem, the

radial change in the thermophysical properties is such an

important aspect that any model has to take this into

due account, thus making it necessary to use a dedicated

equation of state for the fluid.

The third architecture overcomes the discrepancy,

taking the property variation along the radial co-ordi-

nate into account by introducing the groups ðqw=qbÞ and
ð�ccP=cP;bÞ, which are also in the KPPG conventional

equation. The results are shown in Table 4 for the first

and second versions of this architecture. The data source

[8] is well represented by this first version, with an AAD

of 2.98%. The representation of the external sources is

globally on a par with the conventional equation. So this

third architecture can predict other data sources outside

the training set. In the second version of this architec-

ture, some points from external sources were introduced

in the regression and this surprisingly failed to improve

the representation of either the data [8] or the external

sources. It may be that data noise interferes with re-

gression accuracy. The AAD of the second version for

the source [8] is 8.81% versus 2.98% for the first version,

and the maximum deviation is much smaller than for the

first and second architectures.

The results obtained with the fourth architecture are

presented in Table 5. In this case too, two versions of

the same architecture were devised, depending on the

data set used to train the NN, i.e., a subset from ref-

Table 4

Third architecture MLFN model validationa;b

NPT NPT3 Conventional KPPG equation MLFN 3rd arch., 1st vers. MLFN 3rd arch., 2nd vers. Ref.

AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%)

1114 1114 3.50 3.03 15.85 2.98 0.29 12.46 8.81 2.68 31.88 8

63 3 8.19 ) 8.19 ) 9.45 17.40 ) 17.40 ) 21.86 21.71 ) 21.71 ) 22.09 2

35 0 – – – – – – – – – 3

69 25 21.94 ) 12.44 ) 39.61 39.83 ) 21.87 57.27 18.32 ) 4.72 38.39 1

36 18 13.13 7.15 29.58 12.33 12.33 27.26 24.41 23.03 46.58 4

27 1 25.95 ) 25.95 25.95 18.81 18.81 18.81 13.14 13.14 13.14 5

90 7 5.36 3.66 11.83 5.81 ) 5.81 ) 13.03 20.54 15.21 51.13 6

28 0 – – – – – – – – – 7

1462 1168 4.09 2.72 )39.61 3.98 )0.06 57.27 9.08 2.86 51.13

a,b See footnotes at Tables 1 and 2.

Table 5

Fourth architecture MLFN model validationa;b

NPT NPT4 Conventional KPPG equation MLFN 4th arch., 1st vers. MLFN 4th arch., 2nd vers. Ref.

AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%) AAD

(%)

Bias (%) Max (%)

1114 1114 3.50 3.04 15.86 1.19 0.05 )24.81 7.05 )4.85 )74.69 8

63 0 – – – – – – – – – 2

35 0 – – – – – – – – – 3

69 0 – – – – – – – – – 1

36 21 11.49 5.98 29.58 17.80 17.80 31.96 8.33 5.50 27.64 4

27 0 – – – – – – – – – 5

90 41 22.36 5.70 75.95 35.02 )21.28 )71.45 6.37 8.64 22.32 6

28 0 – – – – – – – – – 7

1462 1176 4.30 3.18 75.95 2.67 )0.38 )71.45 7.04 )4.45 )74.89
a,b See footnotes at Tables 1 and 2.
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erence [8] alone or a combination of [8] and points

from available sources coming within the range of

variables of reference [8]. This first version also repre-

sents the data source [8] quite well, with an AAD of

1.19%. Unfortunately, the first version is always worse

than the conventional equation in representing the other

sources. In the second version, for the source [8] the

AAD rises to 7.05%, but the other sources are repre-

sented better than by the conventional equation. It

should be noted that, in the second version, some points

from the source [8] show an extremely high deviation,

while they were well represented in the first version.

Clearly, the representations of the heat transfer coeffi-

cient as a function of physical variables, with and

without radial correction, as in the second and fourth

architectures, are the more effective. This also suggests

that using the traditional dimensionless numbers in the

correlation offers no apparent advantage, with the im-

portant drawback of needing the thermodynamic and

transport property equations for the target fluid. Con-

sidering the data sets available, the data can only be

considered consistent for the source [8] since compa-

rable results are obtained for these data with all the

architectures studied. The introduction of other sources

was found to cause a significant loss of effectiveness for

all the heat transfer coefficient surfaces, suggesting that

said sources are inconsistent. It is also worth noting

that the proposed method can be used to check the

consistency of new data sets before using them for

processing. Because the method is totally heuristic, the

data accuracy and distribution as a function of the

independent variables and the experimental technique

are fundamental to ensuring proper results. But if these

requirements are strictly met, the heat transfer coeffi-

cient surface for the case in point is straightforward to

obtain with an uncertainty lower than the experimental

error. Only the controlling independent variables have

to be precisely identified.

In conclusion, the NN heat transfer models in

the form of the third and of the fourth architectures

both appear to offer a coherent description of the data

sets at least as accurate as the KPPG conventional

equation, but with a completely heuristic procedure,

avoiding any physical assumption for the model.

Among the two the fourth architecture is the more

synthetic and most of all does not require any model-

ling for the thermodynamic and transport properties of

the fluid.

7. Discussion and conclusions

The proposed method has been shown to be very

effective in representing a heat transfer coefficient sur-

face for the supercritical heating of carbon dioxide,

also demonstrating that the method may be highly

suitable for heuristically deriving a heat transfer surface

from experimental data on the heat transfer coefficient

alone.

The preliminary correlation test was successful, also

considering the absence of error noise in the virtual data

generated by the KPPG conventional equation. When

the method is applied to the real context of experimental

data in the literature, error noise becomes a very im-

portant drawback that reduces the final accuracy of the

regressed surface. As in any heuristic method, studying

the data base and its possible screening become ex-

tremely important.

As shown earlier, the data have to satisfy some basic

requirements: they have to form a domain as compact as

possible in the independent variables; scattered data sets

should be avoided within the validity ranges of the

equation. Moreover, the data points should be distrib-

uted regularly on an ideal grid of the independent vari-

ables. These conditions are lacking for the data currently

available in the literature, also because heuristic meth-

ods have never been considered in the past for heat

transfer study, apart from rare cases such as the two

previously cited [17,18].

The present results show that an equation in the

dimensionless numbers or in the physical variables

is equally effective in practice, suggesting that dimen-

sionless analysis, for an individual fluid does not

yield any evident advantage. It should be borne in

mind that introducing the individual equation of

state and transport property equations in a conven-

tional heat transfer correlation turns it into a fluid spe-

cific one.

It is only if regularly distributed data are available

for several fluids, with overlapping ranges, that the

generalization problem of a transfer equation could be

studied in more detail, but these conditions are very

difficult to encounter in the experimental works avail-

able––suggesting that the problem would be worth ex-

amining experimentally from this new point of view. In

addition to the data distribution, the experimental

quality of the data also becomes a key element in the

present case. The enormous variation of cP, k, and Pr
along the test section at near-critical pressures, Fig. 1,

suggests avoiding the assumption of mean values of the

heat transfer coefficient over considerable lengths of the

test section, i.e., with considerable temperature chan-

ges: in fact, several sources reveal major variations in

the coefficient with the axial length [1,5]. On the other

hand, the use of electrical heating in the test section

does not guarantee a uniform heat flux on the tube�s
circumference.

Where regularly distributed and very precise data are

available, the proposed method proves capable of draw-

ing a highly accurate heat transfer correlation for the

present difficult problem.
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Appendix A

Table 6

MLFN model parameters

First version Second version

i j wij j k wjk i j wij j k wjk

1 1 0.371897� 103 1 1 )0.351973� 103 1 1 )0.586286� 104 1 1 )0.504978� 102
2 1 0.564132� 103 2 1 )0.260067� 102 2 1 0.183874� 104 2 1 )0.458490� 104
3 1 )0.166154� 104 3 1 )0.532545� 103 3 1 0.910815� 103 3 1 0.154596� 104
4 1 0.588122� 103 4 1 )0.494797� 103 4 1 0.138221� 104 4 1 0.231015� 104
1 2 )0.132091� 103 5 1 )0.147016� 103 1 2 0.305915� 103 5 1 )0.140051� 104
2 2 0.617158� 102 6 1 0.540311� 103 2 2 0.461092� 104 6 1 )0.110874� 104
3 2 )0.834266� 102 7 1 0.509395� 103 3 2 0.812996� 104 7 1 0.115722� 104
4 2 )0.408619� 103 8 1 0.754598� 102 4 2 )0.809621� 104 8 1 )0.212404� 103
1 3 )0.406462� 103 1 3 )0.949439� 103
2 3 )0.829393� 103 2 3 0.113380� 103
3 3 0.142816� 104 3 3 0.254532� 104
4 3 )0.414260� 103 4 3 )0.112275� 104
1 4 0.868087� 102 1 4 0.577760� 103
2 4 0.475781� 103 2 4 0.621289� 104
3 4 )0.540806� 103 3 4 0.938256� 104
4 4 0.236564� 103 4 4 )0.972685� 104
1 5 0.287985� 102 1 5 )0.108878� 104
2 5 )0.122434� 103 2 5 )0.209075� 102
3 5 )0.181134� 103 3 5 0.277226� 104
4 5 )0.292215� 103 4 5 )0.115927� 104
1 6 0.149757� 103 1 6 )0.110367� 105
2 6 0.438235� 103 2 6 )0.403938� 104
3 6 0.134736� 103 3 6 )0.530483� 104
4 6 )0.493351� 103 4 6 0.883169� 104
1 7 )0.486437� 103 1 7 )0.108021� 105
2 7 )0.246169� 103 2 7 )0.372409� 104
3 7 0.364132� 103 3 7 )0.459035� 104
4 7 0.441017� 103 4 7 0.821134� 104

Vmin;1 � Remin 0 Vmin;1 � Remin 0

Vmax;1 � Remax 200000 Vmax;1 � Remax 200000

Vmin;2 � Prmin 0 Vmin;2 � Prmin 0

Vmax;2 � Prmax 10 Vmax;2 � Prmax 10

Vmin;3 � Ecmin 1� 10�8 Vmin;3 � Ecmin 1� 10�8
Vmax;3 � Ecmax 1� 10�3 Vmax;3 � Ecmax 1� 10�3
Wmin;1 � Numin 0 Wmin;1 � Numin 0

Wmax;1 � Numax 2000 Wmax;1 � Numax 2000

J 7 J 7

b 1.0 b 1.0

c 0.005 c 0.005

Amin 0.05 Amin 0.05

Amax 0.95 Amax 0.95

Bias 1 1.0 Bias 1 1.0

Bias 2 1.0 Bias 2 1.0

I 4 I 4

K 1 K 1

NPT training 254 NPT training 341

Training residual AAD 1.14% Training residual AAD 9.10%

Architecture I in terms of dimensionless numbers.
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Table 7

MLFN model parameters

First version Second version

i j wij j k wjk i j wij j k wjk

1 1 )0.248015� 104 1 1 0.284703� 104 1 1 )0.706131� 103 1 1 0.488865� 103
2 1 0.283736� 104 2 1 0.116879� 104 2 1 0.689745� 103 2 1 0.784691� 103
3 1 0.232546� 103 3 1 0.465801� 103 3 1 )0.480155� 102 3 1 )0.126974� 104
4 1 )0.858384� 102 4 1 0.665010� 103 4 1 )0.222978� 103 4 1 0.160950� 104
5 1 )0.168410� 104 5 1 )0.143549� 104 5 1 )0.293807� 103 5 1 0.139591� 104
1 2 0.854304� 103 6 1 )0.610317� 103 1 2 0.268755� 102 6 1 )0.998799� 103
2 2 )0.148742� 104 7 1 0.169050� 103 2 2 0.178970� 103 7 1 )0.113385� 104
3 2 0.533944� 103 3 2 0.908931� 102
4 2 )0.861586� 103 4 2 0.139885� 103
5 2 0.737809� 103 5 2 )0.157490� 103
1 3 )0.901879� 103 1 3 )0.700956� 103
2 3 0.156283� 104 2 3 0.195208� 103
3 3 )0.687032� 103 3 3 )0.969243� 103
4 3 0.119316� 104 4 3 0.923140� 103
5 3 )0.894317� 103 5 3 )0.160975� 103
1 4 )0.292466� 102 1 4 0.636428� 103
2 4 0.933875� 102 2 4 )0.599891� 104
3 4 0.257000� 103 3 4 0.128718� 103
4 4 0.421124� 102 4 4 )0.263281� 103
5 4 0.406214� 102 5 4 0.304534� 104
1 5 0.155543� 103 1 5 )0.759045� 103
2 5 )0.412234� 103 2 5 0.684929� 104
3 5 )0.315474� 103 3 5 )0.135139� 103
4 5 0.852603� 102 4 5 0.233377� 103
5 5 0.734623� 103 5 5 )0.343108� 104
1 6 0.963893� 103 1 6 0.812007� 103
2 6 )0.166760� 104 2 6 )0.376069� 103
3 6 0.431571� 103 3 6 0.118077� 104
4 6 )0.711931� 103 4 6 )0.114534� 104
5 6 0.726561� 103 5 6 0.264356� 103

Vmin;1 � Pminr 1.0 Vmin;1 � Pminr 1.0

Vmax;1 � Pmaxr 2.0 Vmax;1 � Pmaxr 2.0

Vmin;2 � Tminr 0.9 Vmin;2 � Tminr 0.9

Vmax;2 � Tmaxr 1.1 Vmax;2 � Tmaxr 1.1

Vmin;3 � _mmmin 0 Vmin;3 � _mmmin 0

Vmax;3 � _mmmax 1000 Vmax;3 � _mmmax 1000

Vmin;4 � _qqmin 0 Vmin;4 � _qqmin 0

Vmax;4 � _qqmax 100 Vmax;4 � _qqmax 100

Wmin;1 � hmin 0 Wmin;1 � hmin 0

Wmax;1 � hmax 10 Wmax;1 � hmax 10

J 6 J 6

b 1.0 b 1.0

c 0.005 c 0.005

Amin 0.05 Amin 0.05

Amax 0.95 Amax 0.95

Bias 1 1.0 Bias 1 1.0

Bias 2 1.0 Bias 2 1.0

I 5 I 5

K 1 K 1

NPT training 254 NPT training 295

Training residual AAD 0.72% Training residual AAD 3.3%

Architecture II in terms of physical variables.
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Table 8

MLFN model parameters

First version Second version

i j wij j k wjk i j wij j k wjk

1 1 0.204538� 103 1 1 0.626690� 102 1 1 )0.185090� 103 1 1 0.215557� 103
2 1 )0.742302� 102 2 1 )0.313530� 103 2 1 0.155080� 103 2 1 0.148316� 103
3 1 0.881667� 102 3 1 )0.119367� 103 3 1 0.451747� 103 3 1 )0.235078� 103
4 1 )0.517582� 102 4 1 0.117205� 103 4 1 )0.150762� 103 4 1 0.990889� 102
5 1 0.586651� 102 5 1 0.424826� 103 5 1 0.767209� 102 5 1 )0.397845� 103
1 2 )0.202361� 103 6 1 )0.346648� 103 1 2 )0.255694� 102 6 1 )0.215425� 103
2 2 )0.394960� 103 7 1 )0.574151� 102 2 2 0.103816� 103 7 1 0.793730� 102
3 2 0.426323� 101 3 2 )0.374707� 103
4 2 )0.217891� 103 4 2 0.288729� 103
5 2 0.291822� 103 5 2 )0.491152� 102
1 3 )0.160170� 103 1 3 )0.449449� 103
2 3 0.906126� 102 2 3 )0.210870� 102
3 3 )0.190610� 103 3 3 )0.856748� 102
4 3 0.197592� 103 4 3 )0.197153� 103
5 3 )0.136176� 102 5 3 0.302799� 103
1 4 )0.332551� 103 1 4 0.197387� 103
2 4 0.137973� 101 2 4 )0.138814� 103
3 4 )0.224856� 103 3 4 )0.351408� 101
4 4 )0.145620� 103 4 4 0.101890� 103
5 4 )0.185221� 103 5 4 )0.286913� 102
1 5 0.139882� 103 1 5 0.625080� 102
2 5 )0.386978� 103 2 5 0.724213� 103
3 5 0.205465� 103 3 5 0.318383� 103
4 5 0.232308� 103 4 5 )0.136090� 103
5 5 0.264479� 103 5 5 0.170237� 102
1 6 0.253937� 103 1 6 )0.621465� 102
2 6 0.122175� 103 2 6 0.106948� 103
3 6 0.140451� 102 3 6 0.493704� 102
4 6 0.191574� 103 4 6 )0.191543� 103
5 6 0.315225� 103 5 6 )0.400852� 103

Vmin;1 � Remin 0 Vmin;1 � Remin 0

Vmax;1 � Remax 200000 Vmax;1 � Remax 200000

Vmin;2 � Prmin 0 Vmin;2 � Prmin 0

Vmax;2 � Prmax 10 Vmax;2 � Prmax 10

Vmin;3 � ðqw=qbÞ
min

0.0 Vmin;3 � ðqw=qbÞ
min

0.0

Vmax;3 � ðqw=qbÞ
max

1.0 Vmax;3 � ðqw=qbÞ
max

1.0

Vmin;4 � ð�ccP=cP;bÞmin 0.0 Vmin;4 � ð�ccP=cP;bÞmin 0.0

Vmax;4 � ð�ccP=cP;bÞmax 5.0 Vmax;4 � ð�ccP=cP;bÞmax 5.0

Wmin;1 � Numin 0 Wmin;1 � Numin 0

Wmax;1 � Numax 2000 Wmax;1 � Numax 2000

J 6 J 6

b 1.0 b 1.0

c 0.005 c 0.005

Amin 0.05 Amin 0.05

Amax 0.95 Amax 0.95

Bias 1 1.0 Bias 1 1.0

Bias 2 1.0 Bias 2 1.0

I 5 I 5

K 1 K 1

NPT training 254 NPT training 308

Training residual AAD 2.87% Training residual AAD 8.90%

Architecture III accounting for property variations in terms of thermophysical properties.
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Table 9

MLFN model parameters

First version Second version

i j wij j k wjk i j wij j k wjk

1 1 )0.974960� 103 1 1 )0.100261� 104 1 1 )0.614630� 103 1 1 0.480367� 103
2 1 0.916281� 103 2 1 )0.399416� 103 2 1 0.357762� 104 2 1 0.218410� 104
3 1 0.261515� 102 3 1 0.118443� 103 3 1 )0.542253� 103 3 1 )0.953904� 103
4 1 )0.643750� 103 4 1 )0.221042� 104 4 1 )0.128948� 103 4 1 0.193485� 104
5 1 )0.456915� 103 5 1 0.553850� 103 5 1 )0.138404� 104 5 1 )0.881437� 103
1 2 0.367568� 102 6 1 0.755857� 103 1 2 0.284665� 103 6 1 )0.142724� 104
2 2 )0.220521� 103 7 1 0.158187� 103 2 2 )0.148327� 104 7 1 0.184221� 103
3 2 )0.244408� 103 3 2 0.573711� 103
4 2 0.802452� 102 4 2 0.674116� 102
5 2 0.432686� 103 5 2 0.423689� 103
1 3 0.991695� 101 1 3 0.608974� 103
2 3 0.210648� 102 2 3 )0.674063� 103
3 3 0.654687� 103 3 3 )0.234528� 103
4 3 )0.108778� 103 4 3 0.142380� 104
5 3 )0.176984� 103 5 3 0.402733� 103
1 4 )0.492360� 103 1 4 )0.223181� 104
2 4 0.103612� 103 2 4 0.717118� 103
3 4 0.856281� 103 3 4 )0.147643� 104
4 4 )0.295894� 104 4 4 )0.968385� 104
5 4 )0.108208� 102 5 4 0.106785� 104
1 5 )0.159922� 104 1 5 )0.421529� 103
2 5 0.201110� 104 2 5 0.436418� 103
3 5 0.963289� 102 3 5 0.176292� 103
4 5 )0.306407� 104 4 5 )0.292709� 104
5 5 )0.610476� 103 5 5 )0.166791� 103
1 6 )0.602721� 103 1 6 0.245427� 103
2 6 0.435930� 103 2 6 )0.114848� 104
3 6 0.759750� 102 3 6 0.640904� 103
4 6 )0.773608� 103 4 6 0.856720� 102
5 6 )0.200099� 103 5 6 0.227289� 103

Vmin;1 � Pminr 1.0 Vmin;1 � Pminr 1.0

Vmax;1 � Pmaxr 2.0 Vmax;1 � Pmaxr 2.0

Vmin;2 � Tminr 0.9 Vmin;2 � Tminr 0.9

Vmax;2 � Tmaxr 1.1 Vmax;2 � Tmaxr 1.1

Vmin;3 � _mmmin 0 Vmin;3 � _mmmin 0

Vmax;3 � _mmmax 1000 Vmax;3 � _mmmax 1000

Vmin;4 � ðTw=TbÞmin 1.0 Vmin;4 � ðTw=TbÞmin 1.0

Vmax;4 � ðTw=TbÞmax 1.3 Vmax;4 � ðTw=TbÞmax 1.3

Wmin;1 � hmin 0 Wmin;1 � hmin 0

Wmax;1 � hmax 10 Wmax;1 � hmax 10

J 6 J 6

b 1.0 b 1.0

c 0.005 c 0.005

Amin 0.05 Amin 0.05

Amax 0.95 Amax 0.95

Bias 1 1.0 Bias 1 1.0

Bias 2 1.0 Bias 2 1.0

I 5 I 5

K 1 K 1

NPT training 254 NPT training 316

Training residual AAD 0.93% Training residual AAD 3.10%

Architecture IV accounting for property variations in terms of temperatures ratio.
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